Coefficiente angolare - puzzle online

Adoro i puzzle puzzle online
20Adoro i puzzlerisolto 26 volte
Risolvi il puzzle
C'era una volta una tempesta di neve puzzle online da foto
20C'era una volta una tempesta di neverisolto 26 volte
Risolvi il puzzle
Testare questo puzzle online da foto
143Testare questorisolto 26 volte
Risolvi il puzzle
LalaHsjajaja puzzle online da foto
81LalaHsjajajarisolto 26 volte
Risolvi il puzzle
Prati con montagna puzzle online da foto
216Prati con montagnarisolto 26 volte
Risolvi il puzzle
Capo Spalato puzzle online
154Capo Spalatorisolto 26 volte
Risolvi il puzzle
Monte Everest puzzle online da foto
48Monte Everestrisolto 25 volte
Risolvi il puzzle
kanay puzzle online
40kanayrisolto 25 volte
Risolvi il puzzle
arte del deserto 5/6 puzzle online
48arte del deserto 5/6risolto 25 volte
Risolvi il puzzle
Forte Aguada puzzle online da foto
88Forte Aguadarisolto 25 volte
Risolvi il puzzle
geomorfo puzzle online
48geomorforisolto 25 volte
Risolvi il puzzle
Paesaggio puzzle online da foto
143Paesaggiorisolto 25 volte
Risolvi il puzzle
1ffffffffffffffffffffffffffffff puzzle online
481ffffffffffffffffffffffffffffffrisolto 25 volte
Risolvi il puzzle
Macchine semplici puzzle online da foto
48Macchine semplicirisolto 25 volte
Risolvi il puzzle
Parque Desportivo de Mafra puzzle online
30Parque Desportivo de Mafrarisolto 25 volte
Risolvi il puzzle
Costruire una lettera puzzle online
234Costruire una letterarisolto 25 volte
Risolvi il puzzle
Memorie TC puzzle online
20Memorie TCrisolto 25 volte
Risolvi il puzzle
AMU - Roman Ficek puzzle online da foto
20AMU - Roman Ficekrisolto 25 volte
Risolvi il puzzle
Circuiti combinati puzzle online da foto
198Circuiti combinatirisolto 25 volte
Risolvi il puzzle
Sfondo con arcobaleno. puzzle online
36Sfondo con arcobaleno.risolto 25 volte
Risolvi il puzzle
Mappa dell'Alabama puzzle online da foto
130Mappa dell'Alabamarisolto 25 volte
Risolvi il puzzle
[AMS] Concorso ferroviario - 5 puzzle online da foto
144[AMS] Concorso ferroviario - 5risolto 25 volte
Risolvi il puzzle
Polios. puzzle online da foto
16Polios.risolto 25 volte
Risolvi il puzzle
Bandiera della Guyana Puzzle. puzzle online
28Bandiera della Guyana Puzzle.risolto 25 volte
Risolvi il puzzle
Gusela del Nuvolau di Passo Giau puzzle online da foto
144Gusela del Nuvolau di Passo Giaurisolto 25 volte
Risolvi il puzzle
Efesini 4: 1 e 2 puzzle online
25Efesini 4: 1 e 2risolto 25 volte
Risolvi il puzzle
Paesaggio in inverno, Guemosan in Corea. puzzle online
144Paesaggio in inverno, Guemosan in Corea.risolto 25 volte
Risolvi il puzzle
Campi di colza gialli e verdi in campagna puzzle online
70Campi di colza gialli e verdi in campagnarisolto 25 volte
Risolvi il puzzle
Ciclo di Calvino puzzle online
30Ciclo di Calvinorisolto 25 volte
Risolvi il puzzle
inverno1 puzzle online da foto
156inverno1risolto 25 volte
Risolvi il puzzle
processori puzzle online
196processoririsolto 25 volte
Risolvi il puzzle
Chimica puzzle online da foto
169Chimicarisolto 25 volte
Risolvi il puzzle
Prova Wordle puzzle online
144Prova Wordlerisolto 25 volte
Risolvi il puzzle
PUZZLE ML puzzle online
150PUZZLE MLrisolto 25 volte
Risolvi il puzzle
Spielplatz puzzle online da foto
150Spielplatzrisolto 25 volte
Risolvi il puzzle
Enigma sugli SDG puzzle online
50Enigma sugli SDGrisolto 25 volte
Risolvi il puzzle
Paesaggio invernale puzzle online da foto
84Paesaggio invernalerisolto 25 volte
Risolvi il puzzle
ora dell'orologio puzzle online da foto
144ora dell'orologiorisolto 25 volte
Risolvi il puzzle
Cascata con arcobaleno puzzle online
150Cascata con arcobalenorisolto 24 volte
Risolvi il puzzle
Braccia della Via Lattea puzzle online
42Braccia della Via Lattearisolto 24 volte
Risolvi il puzzle
paesaggio puzzle online
28paesaggiorisolto 24 volte
Risolvi il puzzle
Logo di attijari puzzle online
16Logo di attijaririsolto 24 volte
Risolvi il puzzle
Nimish Dream House. puzzle online da foto
16Nimish Dream House.risolto 24 volte
Risolvi il puzzle
[AMS] Concorrenza ferroviaria - 2 puzzle online
144[AMS] Concorrenza ferroviaria - 2risolto 24 volte
Risolvi il puzzle
Nordland, Norvegia. puzzle online da foto
140Nordland, Norvegia.risolto 24 volte
Risolvi il puzzle
Parco nazionale di Zion. puzzle online
234Parco nazionale di Zion.risolto 24 volte
Risolvi il puzzle
Modi di dire utili puzzle online
140Modi di dire utilirisolto 24 volte
Risolvi il puzzle
P parole SH Cliente puzzle online da foto
130P parole SH Clienterisolto 24 volte
Risolvi il puzzle

Puzzle online Coefficiente angolare

Coefficiente angolare

In geometria analitica il coefficiente angolare (in lingua inglese slope, pendenza) di una retta non verticale nel piano cartesiano è il coefficiente

m

{\displaystyle m}

che compare nella sua equazione, scritta nella forma:

y

=

m

x

+

q

{\displaystyle y=mx+q\;}

.Partendo dai coefficienti dell'equazione generale

a

x

+

b

y

+

c

=

0

{\displaystyle ax+by+c=0}

,con

b

0

{\displaystyle b\neq 0}

(retta non verticale), il coefficiente angolare è espresso dal rapporto

m

=

a

b

{\displaystyle m=-{\frac {a}{b}}}

.Due rette (non verticali) sono parallele esattamente quando hanno lo stesso coefficiente angolare; in particolare, il coefficiente angolare della retta passante per l'origine,

y

=

m

x

{\displaystyle y=mx}

è la tangente degli angoli formati dalla retta con l'asse delle ascisse: la retta infatti passa per il punto di coordinate

(

x

1

,

y

1

)

=

(

cos

(

α

)

,

sin

(

α

)

)

{\displaystyle (x_{1},y_{1})=(\cos(\alpha ),\sin(\alpha ))}

, quindi

m

=

y

1

x

1

=

sin

(

α

)

cos

(

α

)

=

tan

(

α

)

{\displaystyle m={\frac {y_{1}}{x_{1}}}={\frac {\sin(\alpha )}{\cos(\alpha )}}=\tan(\alpha )}

.Il coefficiente angolare di una retta (non verticale) è il rapporto tra la differenza delle ordinate e la differenza delle ascisse fra due punti distinti della retta,

(

x

1

,

y

1

)

{\displaystyle (x_{1},y_{1})}

e

(

x

2

,

y

2

)

{\displaystyle (x_{2},y_{2})}

:

{

y

1

=

m

x

1

+

q

y

2

=

m

x

2

+

q

q

=

y

1

m

x

1

=

y

2

m

x

2

m

(

x

1

x

2

)

=

(

y

1

y

2

)

m

=

y

2

y

1

x

2

x

1

=

Δ

y

Δ

x

{\displaystyle {\begin{cases}y_{1}=mx_{1}+q\\y_{2}=mx_{2}+q\end{cases}}\Rightarrow q=y_{1}-mx_{1}=y_{2}-mx_{2}\Rightarrow m(x_{1}-x_{2})=(y_{1}-y_{2})\Rightarrow m={\frac {y_{2}-y_{1}}{x_{2}-x_{1}}}={\frac {\Delta y}{\Delta x}}}

Per una retta verticale, di equazione

x

=

x

0

{\displaystyle x=x_{0}}

, questa espressione è priva di significato: due distinti punti della retta hanno diverse coordinate

y

{\displaystyle y}

ma uguali coordinate

x

{\displaystyle x}

, quindi per calcolare il rapporto bisognerebbe dividere per zero (al contrario, in geometria proiettiva il simbolo

(

1

:

0

)

{\displaystyle (1:0)}

è ben definito).

Considerando la retta come grafico di una funzione

f

(

x

)

=

m

x

+

q

{\displaystyle f(x)=mx+q}

, il suo coefficiente angolare è la derivata della funzione:

f

(

x

)

=

m

{\displaystyle f'(x)=m}

(la retta tangente è la retta stessa).

Poiché due rette in forma generale,

a

x

+

b

y

+

c

=

0

{\displaystyle ax+by+c=0}

e

a

x

+

b

y

+

c

=

0

{\displaystyle a'x+b'y+c'=0}

, sono perpendicolari esattamente quando

a

a

+

b

b

=

0

{\displaystyle aa'+bb'=0}

, ne segue che due rette (non verticali)

y

=

m

x

+

q

{\displaystyle y=mx+q}

e

y

=

m

x

+

q

{\displaystyle y=m'x+q'}

sono perpendicolari esattamente quando il prodotto dei loro coefficienti angolari è

m

m

=

1

{\displaystyle mm'=-1}

.Questa condizione può essere riscritta come

m

=

1

m

{\displaystyle m'=-{\frac {1}{m}}}

, ed espressa dicendo che

m

{\displaystyle m'}

è l'antireciproco (opposto del reciproco) di

m

{\displaystyle m}

.